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We calculate the soliton bound lattice defect (SBLD) which arises in an 
Ising chain when the non-ldeal rlgidity of the lattice is admitted and 
its major consequences. Our results are (i) a correction to the soliton 
energy which can be 10% or larger, (li) a positive interaction energy 
which falls off exponentially with sollton separation, and (ill) the 
existence of an energy barrier, E b, which a moving sollton sees at each 
step in its progression and which can be as large as the soliton energy 

itself or larger. Our calculations suggest that the existance of E b 
leads to diffusive propagation and a spin dynamics which agrees with 
recent measurements. In higher dimensions, the corresponding spln-pair 
bound lattice defect is a plausible mechanism for the thermoremanent 
magnetization of spin glasses and for the recently observed "waiting- 
time effect" in amorphous alloy spin glasses. 

I. I n t r o d u c t i o n  

Recently, many experimental investigations 
have been devoted to quasi one-dimensional mag- 
netic systems I. Much of the work has been moti- 
vated by the wealth of (not always) intrinsical- 
ly low dimensional Rhenomena which arise from 
the spin Hamiltonian ~. An example of such phe- 
nomena which concerns us here is the occurrence 
of solltons (or kinks) and their dynamic behav- 
iour. Another example is the spin-Peierls tran- 
sition 3 which is a rare example of what can be 
predicted when the non-ideal rigidity of the 
underlying crystalline lattice is admitted. 

In the present paper we have calculated the 
local lattice perturbation which can be expected 
to "decorate" a magnetic soliton in a strongly 
Ising chain. We refer to this defect as a 
soliton bound lattice defect (SBLD) and show 
that, given its magnitude, we must expect the 
soliton dynamics and many thermodynamic quanti- 
ties such as the susceptibility to be measurably 
affected. 

2 .  S t a t i c  K i n k s  - P u r e l y  I s l n g  C h a i n  a t  
Low T e m p e r a t u r e  

We first consider the lattice distortion 
which arises from a single static domain wall 
(kink or soliton) on an otherwise perfectly 
ordered chain of S = ~ spins. The SBLD which we 
calculate is the same for solltons on ferromag- 
netic (F) and antlferromagnetic (AF) Ising 
chains. The two types of kinks are represented 
in Figs. l(a) and l(b). The SBLD arises because 
the chain can lower its energy by changing the 

separation between the two spins which bracket 
the sollton. The only prerequisites are (i) that 
the lattice is not infinitely rigid and (ii) 
that there is a dependence of the exchange 
strength on inter-spin separation. 

In a first approximation which neglects 
the elastic coupling of the chain to the under- 
lying solid, the lattice stiffness can be 
described in terms of the rigidity (or force) 
constant, R, which appears in the harmonic 
approximation for the lattice potential as: 

2 N )2 (i) 
Uharm = ½Ra o Z (6. - 6n+ I . n= 1 L. 

The dimensionless deviations, 6n, from the regu- 
lar lattice are defined as 6n = (x - nao)/a o 
where x n is the position of L,e n t~ ion (and 
spin) along the chain and a o is the lattice 
spacing in the absence of kinks. A realistic 
value of R can be estimated quite easily. Ionic 
frequencies are typically rio n ~ 1013 Hz and, 
therefore, R = Mion(1013 Hz) 2 = 103 K/~ 2. Taking 
a o = 3 - 4 A implies that the term Ra~ in Eq. I 
is the order of Ra~ = 104 K. Also, the depend- 
ence of the exchange strength on separation can 
often he expressed as: 

Jij = Jo(ao/IXj - xl]) ~ (2) 

where, for many transition metal oxides and 
fluorides, 4 ~ ~ I0 - Ii. Low dimensional mate- 
rials where the inter-transltion metal exchange 
bonds arise from superexchange via O, F or C1, 
can also be expected to have q's which are of 
this order - as is found in, for example, 
(C3H7NH3)2MnC14 where ~ = 12. 5 Our main results 
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Fig. i The SBLD ({dkl) is illustrated for three 
values of the chain to host solid coupling coef- 
ficient =. a ~ A ferromagnetic kink on the Ising 
chain, b - An antiferromagnetic klnk on the 
Ising chain, c, d and e - Bar charts of d k ver- 
sus position index k for ~ = i, 0 and 0.5 
respectively. 

should apply to such quasi-one-dlmensional mate- 
rials whose effective spin Hamiltonians are 
Ising-like at low temperatures and in which the 
intra-chain exchange strength varies as in Eq. 2 
and irrespective of whether Jo is positive (AF) 

or negative (F). 
Consider the derivation of {0i} for a sin- 

gle soliton on an infinite chain. If Eq. 2 is 
expanded as: 

Jij = No[ I - q(6j - 6i) + 0(62)] (3) 

and the position index, i, is taken to be i = 0 
and I for the spins which bracket the soliton 
(i.e. the soliton is at i = ½) then the net 
energy difference, AE, between a perfectly rigid 
lattice containing one soliton and a non-rigld 
lattice also containing one soliton is expressed 
as: 

AE = -4~Jo61 + 3Ra~6~ + 2Ra~ ~ (6~ - 6n6n_l)(4) 
n=g 

where we have used the symmetry requirement that 

Vol. 58, No. 7 

Op = -0_p+ I. The minimum of AE represents the 
correction to the soliton energy, Es, which must 
be made when coupling to the lattice is allowed. 
The minimization can be accomplished via 
bAE/bO i = 0 if we take the spins at i = +N and 
i = I - N to be pinned (for example, by two 
impurities which are more strongly coupled to 
the host solid). Then the solution is 

6 i = [(2N - 2i)/(2N - I)]NJo/Ra ~ (5) 

for i < N and O i = 0 for i ~ N. In the limit 
N + ~ the solution becomes 

61 = O 2 = 63 = i.. = DJo/Ra~ and 
AEmi n = -2(~Jo) /Ra~. In words, the two chain 
segments on either slde of the soliton are dis- 
placed by either plus or minus DJo/Ra ~ and the 
only bond which is affected is the one which 
plays host to the soliton - its length is 
increased by (2DJo/Ra~)ao. The net decrease In 
the soliton energy, AEmin, should be added to 
the unperturbed value of 21Jol and corresponds 
to ~i0% for D ~ i0 and Jo ~ i0 K. Also, the O's 
are the order of ~I - 10% for IJol ~ I0 - i00 K. 
The SBLD is therefore not negligibly small and 
is well defined even on the scale of the root 
mean square ionic displacements which are gener- 
ally < 1% and which also go as I/R. Note, howev- 
er, that anharmonic terms in the lattice poten- 
tial will limit the O's such that a realistic 
maximum is 2 - 3%. 

We now describe the case where elastic 
coupling to the host solid Is included. Such 
coupling adds a term ½R'a~ ~ O~ to the energy 
change such that the new AE i~ written: 

AE =-4~Jo61 + 3~Fa262 

+ 2~Fa2o ~ (&n 2 - 0n6n_l) 
n=2 

+ (1 =)Fa2 o 
n=l " 

(6) 

where ~ and F are defined by R = ~F, 
R' = (i - =)F and 0 < = < I. We can expect ~ = 1 
(R' << R) when the chains are very weakly chemi- 
cally bonded to each other in the solid - such 
as by hydrogen bonds as in the quasi-onedimen- 
sional ferromagnet Co[(CH3)3NH]CI3.2H20.6 On the 
other hand, we expect = = ½ (R' = R) in a com- 
pound such as CuCI27 where inter-chain bonds are 
comparable to the intra-chain bonds. 8 (in CuCI 2 
the chains are magnetically isolated by frustra- 
tion. 8) For completeness, we also consider the 
case where = = 0 (R' >> R). When = = 0, the 
solution is 61 = 2DJo/Fa ~ and 6 i = 0 for i > i. 
This can also be expressed in terms of the 
rescaled fractional change in separation, dk, 
between two ions at i and i + i: 

di+ ½ E (6i+ I - 6i)Fa~/DJ o. (7) 

The result for ~ = 0 is then d½ = +4, d3/2 = -2 
and dk>3/2 = O. Similarly, the result for ~ = I 
is re-expressed as d½ = +2 and dk> ½ = O. The 
solutions {dk} for ~ = 0 and i are shown graphi- 
cally in Figs. l(d) and l(c) respectively. The 
special case of ~ = ½ is illustrated in 
Fig. l(e) and some relevant quantities for 

= O, ½, and i are given in Table i. The SBLD 
can be obtained for arbitrary ~ by minimizing 
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Table I Pertinent quantities associated with a SBLD. 
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quantity units bound chain intermediate 

~:0 ~:0.5 

free chain 

61 ~Jo/Fa~ +2.0 +1.1055 

62 0.0 +0.4223 

63 0.0 +0.1613 

d~ +4.0 +2.2111 

d3/2 -2.0 -0.6832 

d5/2 0.0 -0.2610 

e I (DJo)2/Fa~ 2.0 1.1055 

E2 1.0 0.3416 

e3 0.0 0.1305 

+I .0 

+i .0 

+i.0 

+2.0 

0.0 

0.0 

1.0 

0.0 

0.0 

AEmin -4.0 -2.2111 

E~ +12.0 +5.7884 

-2.0 

+4.0 

Note that, quite generally E~ = ~IJoI(661 - 262) and 

AEmi n = -2~IJo16 I. 

Eq. 6 and is expressed as 

6 i = CoINJo/Fa~) exp[i/ro] (8) 

where the dimensionless constants r o and C O 
depend on ~ as given in Fig. 2. Note that {6i} , 
as given by Eq. 8 and when = ¢ i, satisfies the 
relation d, = -2 ~, d which follows from the nT~ n 
boundary condition d±~ = O. It also follows that 
AEmin/DJ o = 261 which is plotted as a function 
of ~ in Fig. 2 (dashed line). 

As expected, the SBLD is, in most cases, 
well localized - falling off exponentially with 
coordinate index from the soliton at i = ~. Such 
defects give rise to a local decrease in the 
magnetic exchange which is the order of 
(NJo)2d½/Fa~ - that is, typically 10% for 
D = i0 - 12 and IJol = i0 K or greater. We now 
ask which properties are most sensitively 
affected by this. 

It is easy to see that many of the thermo- 
dynamic properties of the chain are affected by 
the SBLD. In the context of static solitons we 
assume the lattice response time, ~n, to be zero 

which is true to the extend that I/rio n is 
much smaller than the spin autocorrelation 
tlme,.cZa • As a first approximation we also 
take {dk~ to be of the form given in Fig. l(c). 
We write half of the local change in Jij as 
EIJ o = (DJo)2d½/2Fa~ and the effective spin 
Hamiltonian can be expressed as: 

N 
~i " ~j [Jo (I - ~lj) + Jo (I - 2el)=ij]S~S~ (9) 

where the sum is over near neighbour spins, 
S~ = ± i and =lj, for the AF case, is equal to I 
when sign (S~) = sign (S~) and zero otherwise. 
Using =~ = ~I - S~S~), ~q. 9 reduces to: 

~F N el)S~S~] NJoel = ~j[Jo(l - + (io) 

in which the zero of energy is shifted by alNJ o 
and the exchange constant is replaced by an 
effective exchange of Jo(l - el). This means, 
for example, that the broad maximum in the zero 
field susceptibility of the AF Ising chain is 
shifted towards lower temperatures by an amount 
ellJol whereas its functional form is unaffected 
to this "first order". Consequently, if one 
derives the soliton energy from the position of 
this maximum in a real system, one arrives at an 
already corrected E s of 21Jo(l - el) I. Simi- 
larly, all of the equilibrium thermodynamic 
quantities such as specific heat and soliton 
density are redefined by the substitution 
Jo ÷ Jo( I - el)- Note that Eq. I0 is exact, 
within the T L = 0 assumption when = = 1.0 and 
that, to this first order, the true soliton 
energy [21Jo] + AEmin) is correctly given by the 
effective J value. 

In the next order calculation we take {dkl 
to be of the form shown in Fig. l(d) and define 
e 2 by e2J o = (NJo)2d3/2/2Fa~. The effective spin 
Hamiltonian is then written as: 
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Fig. 2 i/r o and -logeC o as functions of ~. Irol 
is the range of the SBLD in number of lattice 
units and C o is a dimensionless constants which 

also depends only on ~ and scales the magnitude 
of 6 i - see Eq. 8. The correction, AEmin, to the 
soliton energy is also plotted as a function of 

and in units of (GJo)2/Fag (right hand scale - 

dashed line). 

N 
~2 : ~jJo [I - 2el=ij + 2E2[~i-l,i + ~j,j+I)]S~S~ 

(11) 

which reduces to 

~2 F= £1NJo 

N E (cZ S z cZsZ ~1 
+ J Z [ ( 1  - E 1 + 2E2)S~S I - 2tOi_l j + o i j + l ~ j  

° i j  
(12) 

where it is understood that only terms with 
I i - Jl = 1 contribute to the sum. From Eq. 12 
we see that to "second order" it is not suffi- 
cient to have an effective exchange but that 
longer range spin correlations enter the pic- 
ture. The second term in the sum of Eq. 12 gives 
rise to a short range repulsion between solitons 
since it makes it energetically unfavourable for 
two solitons to be separated by only one spin. 
This repulsion must however be corrected because 
the lattice defects which arise from two 
solitons are not additive such that, even for 

= O, Eq. 12 is only a good approximation with- 
in the zero lattice response time assumption. In 
section 4 we shall show that to "infinite order" 
(i.e. allowing {dk} to have a long range exten- 
sion for general ~ ~ 0 or I) the SBLD's lead to 
a repulsive potential which falls off expo- 

D~ 
m 

3 
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nentially with inter-soliton separation and 
whose range and strength are functions of ~. 

Concerning soliton interactions, we point 
out that dipole-dipole forces can play an impor- 
tant role in the ferromagnetic case at low 
temperatures. For an isolated S = ½ Ising chain 
with Jo < 0 the domain size, ~, at T = 0 K can 
be shown to be given by: 

~/a o = (IJol a~/~)½ (13) 

where ~B is the Bhor magneton. With IJol = I0 K 
and a o = 3 A, this corresponds to roughly thirty 
lattice units. On the other hand, the purely 
Ising Hamiltonian predicts that the density of 
domain walls should be zero at T = 0 K - clearly 
the dipole-dipole interactions will perturbe the 
Ising thermodynamics considerably at tempera- 
tures which are small compared to IJol. 

In the next section we argue that, whereas 
the Hamiltonians ~I (Eq. i0), ~2 (Eq. 12), etc. 
adequately describe the equilibrium properties 
of a non-rlgid Ising chain at low temperatures, 
they do not lead to the correct soliton dynamics 
when the usual transverse exchange terms are 
added to allow such dynamics. 

3. Sollton Dynamics: Quasl-lslng Chain 
at Low Temperature 

It is now well known that sollton dynamics 
arise in both the F and AF rigid Ising chains 
when a transverse exchange term is added to the 
Hamiltonian see, for example, the recent 
review by de Groot et al. 9 Villain has shown I0 
that, in the AF case, a transverse term of the 

YJoSiS i I  x x + SYSX)l J with IYI << i is suffi- form 
cient to give dynamics. In analogy with 
Villain's work, if we add a term 

yJo(l - 2El=i.)(S~S~ + S~S~) to our Hamiltonian 
J J J 

of Eq. 9 we arrive at a corrected dynamics where 
the soliton velocity is given by: 

vs(k) = 4YJo(l - 2El) sin 2k (14) 

and k is the soliton wavevector. This picture 
ignores the soliton interactions (which is jus- 
tifiable to this first order at low tempera- 
tures) but, most importantly, it neglects the 
fact that ~L is not zero. This is a major flaw 
which makes the relation (14) inapropriate for 
any real system at any temperature. 

A typical soliton velocity, as can be esti- 
mated from the transverse exchange in a quasi- 
onedimensional antiferromagnetic compound such 
as RbFeCI3.2H209 and assuming perfect rigidity, 
is v s ~ i - I0 m/s. This is by far slow enough, 
compared to ionic frequencies, to consider that 
the SBLD is unaltered in shape by the soliton 
motion and that it effectively follows the 
soliton without lag. Although Z~c E ao/V s >> ~L, 
the relaxation time, ~L, for the SBLD to rees- 
tablish itself on the new soliton position is 
not zero and this means that, when the soliton 
jumps, the energy of the chain is raised by an 
amount the order of IBq2Jo/Rag)Es and for a 
time ZL- This amounts to a barrier in energy 
which the soliton must overcome at each step in 
its progression. The barrier height, E~, can be 
taken to be the change in energy which is pro- 
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duced in moving the soliton by one lattice unit 
without altering the SBLD and the barrier width 
is the order of (~L/~e)a o. The ratio of E~ to 
the SBLD-corrected soliton energy E s is shown as 
a function of IJol in Fig. 3. The anharmonic 
effects were assumed to enter and be effective 
in limiting 6 i when 61 ~ 1%. Surprisingly, E~ is 
comparable to or larger than E s for IJol ~ I0 K 
and is notably much larger than the transverse 
exchange terms (YJo) which are assumed to be 
responsible for the dynamics in the real sys- 
tems. 
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(E~ and E~) for the motion of a given soliton 
towards (Eb)~t and away + from (Eb) the nearest 
neighbouring soliton. E b is found to always be 
larger than E~. 

4. S B L D  I n t e r a c t i o n s  

2 ' I ' I '1 II I ' ~  

• , I , I , Zo o  //2o 30 
Jo(K)  

Fig. 3 Ratio of barrier energy, E~, to SBLD cor- 

rected soliton energy, Es, as a function of IJol 
for = = 0.5. Curve i ignores anharmonic limita- 
tions and corresponds to 
E~/E = @IJ I/(i - 8 ] J  I/~) with 
D 2 o 1 o 8 = ~ /Fa~ = 0.04 K- and ~ = 3. Curve 2 in- 

cludes anharmonic effects which are chosen to 
limit 61 ~ 2 - 3% and curve 3 is the low IJol 

limit of E~I~ s = ehJol. 

In order to calculate the soliton dynamics 
properly we should start from a Hamiltonian 
which contains the phonon degrees of freedom 
however this is impractical. We follow the phe- 
nomenological approach II and take the soliton to 
be a particle of rest mass M s = Es/c ~ where c o 
is the maximum soliton velocity as obtained, for 
example, from the dispersion relation (14) where 
c o = 41YJol(l - 2el). The soliton kinetic energy 
is taken to be Esk = ~Msv ~ which has a thermal 
average of (4/~2)Es at kBT >> 2yJ o. This euris- 
tic approach suggests what the effect of E~ 
might be on the soliton dynamics. For small bar- 
riers (Jo ~ I K) the soliton will have a mean 
free path of many lattice units before it is 
self scattered in the opposite direction. For 
large barriers (Jo ~ 25 K) the soltion is self- 
trapped and must tunnel out of its own barrier - 
in which case we can expect its progression to 
be truly random walk-like with equal probabil- 
ities at each step to jump forward or backwards. 
In either case, these considerations suggest 
that in many real systems the soliton propaga- 
tion should be diffusive. 

In the next section we suggest that a very 
effective mechanism which drives dynamic 
solitons apart arises from the effect which 
nearby solitons have on the two barrier heights 

It is straightforward to calculate the 
SBLD ({6i}) which arises from two static kinks 
some number, d/ao, of lattice units apart. The 
corresponding energy perturbation, AEd, is less 
negative than the total, 2AEmin, for two kinks 
infinitely far apart and, clearly: 

lim AE d = 2AEmin(~,F,~,Jo,ao) . 
d-~== 

The interaction potential between two static 
kinks in a non-rigld chain can therefore be 
written as V(d) = AE d - 2AEmi n and turns out to 
be: 

V(d) = Vo((~Jo)2/Fa~)exp[d/Dao] (15) 

where the dimensionless constants V o and D 
depend only on a in the manner shown in Fig. 4. 
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Fig. 4 I/D and -logeV o as functions of ~ (left 
hand scale). IDI is the range of the soliton 
interaction energy and V o appears in its magni- 
tude - see Eq. 15. V o is also plotted directly 
(right hand scale). 

In the limit that the ionic positions in the 
chain are strongly related to a specific set of 
regularly spaced host solid coordinates (~ + 0), 
the potential becomes very short ranged and very 
strong. If the chain is progressively freed from 
the host solid elastic constraints (~ ÷ I), then 
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the range, ID[, of the repulsive potential grows 

monotonically until [D[ = ~ at a = 1 and its 
strength, Vo, simultaneously decreases until 
V o = 0 at = = i. At ~ = 0.5, we see that the en- 

ergy involved, Vo(qJo)2/Fa~, becomes comparable 
to or larger than IJol for IJol ~ 25 K. In real 
systems, therefore, one can only hope to observe 
free soliton gas behaviour if D2iJol << Fa~ 
which typically means [Jo[ << 25 K. For larger 
Jo values there will be a strong tendency, ener- 
getically, for the solitons to be regularly 
spaced apart. This tendency is reenforced by the 
dipole-dipole forces in the F case. 

The above energy considerations imply that, 
in equilibrium, the distribution of near neigh- 
bour soliton separations is narrowly peaked 
about the average value of i/n s where n s is the 
number of kinks per unit length. If the solitons 
possess dynamics by virtue of a small transverse 
exchange term, then a similar distribution must 
still result from many "snap shots" of the 
chain. There must therefore exist a "dynamic 
repulsion" which does not arise directly from 
V(d) since V(d) simply describes the energetlcs 
of the chain without corresponding to a true 
repulsive force between solitons. The required 
mechanism arises from the barriers E~ and E~ 
which must exist since in any real lattice 
ZL ~ O. We calculate the barrier heights in the 
manner described in section 3 and our results 
for ~ = 0.I and ~ = 0.5 are plotted in Fig. 5. 

12 

~ 10 o --) 

u_ 8 

LJ 

I \l I I 

0{=0.1 

r  :o.s 

6 -  

4 I I I 1 
1 2 3 4 

d/Oo 

5 The two barrier energies E~ and E~ for Fig. 
two values of = and as a function of inter- 
soliton separation d/a o. The solid lines are 
merely meant as an aid to the eye. The value, 
E~, for a solitary kink is also shown by a 
dotted line for each of the two ~ values. 

The relation to v(d) becomes clear if we write 
the difference between barrier heights as 
& ~ (E~_ - E~)/(E~ + Eb). The functional depend- 
ence of A on near neighbour soliton seperation, 
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d/ao, (assuming only two solitons on the chain) 
is then found to be: 

&(d) = A o exp[d/Dao] ( 1 6 )  

where D is the same as defined in Eq. 15 and 
plotted in Fig. 4. A(d) and V(d) therefore both 

fall off exponentially as exp(-d/IDlao). A o 
increases monotonically from b e i n g  zero at 

= 1.0 through A o = 0.I17, 1.382 and 13.330 at 
= 0.I, 0.5 and 0.9 respectively. 

In order to calculate the dynamics which 
might arise from Eq. 16, we assume the heuristic 
model described in section 3 where the soliton 
is taken to be a particle which must tunnel 
through a square potential barrier with height 

comparable to E s (as shown in Fig. 3) and width 
~(~n/~c)ao. The two barriers E~ and E~ the~ 
give rise to two transmission coefficients T 
and T- which of course are functions of the 

inter-soliton separation. We expand T(E~;d/ao) 
about E~ = E~ and write 

= ~T (17) [T+(d/a o) - T-(d/ao) ] -~b)E ~ m~ A 

or 

(T- - T +) = 2AA/(I + A) 2 (i8) 

where - . ~ . w e  have taken EL' = E~ such that 

A = 2(E~)2(Es/Esk)IaoZL/CohZ~o] 2 . _ ~  It is then 
possible to calculate the time, t(n), it takes 
for two solitons which are initially only one 
lattice unit apart (as when, by thermal activa- 
tion, a single spin is overturned on an other- 
wise ordered part of the chain) to become sepa- 
rated by n lattice units, t(n) is simply: 

a o t(n) = -~o ! [T-(d/a°) - r+(d/a°)]-l~(d/a°) 

= a--~° ~ AolDl[exp(+n/iDl) - I] (19) 
c O 

For kBT >> YJo, the thermally averaged soliton 
kinetic energy can be written Esk = (4/~2)Es and 
a reasonable estimate of the ratio ZL/~c is 
~ 10 -2 . It then follows that for E~ = 15 K and 
ao/C o = 3 x I0-II s, t(n) is approximately given 
by t(n) = (6 × I0 -II S)AolDl[exp(n/IDl) - I]. 
This suggests that for a large range of ~, 
t(n ~ i0-i00) can be much smaller than the 57Fe 
M~ssbauer measurement time of t m ~ 10 -7 sec. The 
consequences of this on the MDssbauer spectrum 
of a quasi-onedimensional Ising-like magnet are 
discussed in the next section. Note that, if 
y = 0 and only thermal "walking" is allowed then 
the above constant 6 × I0 -II s must be replaced 
by a thermal hopping time which is expected to 
be larger at these low temperatures but which is 
still fast compared to, for example, the meas- 
urement time of AC susceptibility. 

5. S p i n  A u t o c o r r e l a t i o n  T i l e s  f rom t h e  
~ s s b a u e r  E f f e c t  

It has recently been pointed out that the 
M~ssbauer technique is a useful tool for the 
study of soliton dynamics in quasi-onedimension- 
al magnets. 12 For a review of the subsequent 
experimental work see ref. 9. From that work it 
is clear that the spin dynamics cannot be under- 
stood from the free soliton gas behaviour since, 
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as de Groot et al. 9 have pointed out, this would 
yield an excess linebroadening which would go as 
the soliton density, that is, as exp(-21Jol/kT) 
instead of the observed temperature dependence 
of exp(-41Jol/kT). The observed 4J o dependence 
has not been explained. De Groot et al. have 
noted 9, however, that a "soliton-lattice struc- 
ture", which would arise if a strong enough 
soliton repulsive interaction existed, could 
explain the 4J o dependence. This is consistent 
with our present picture where (i) a regular 
array-like structure of solitons does arise from 
V(d), (ii) the local Jumping of a soliton about 
its "equilibrium" position is the order of 
CoT±/ao and is therefore too fast compared to 
I/t m to cause a linebroadening and (iii) the 
spin fluctuations which can cause the broadening 
arise from the rapid running apart (in a time 
t(n)) of a thermally created soliton/antisoliton 
pair. The frequency of fluctuations (i/~ac) then 
goes as the frequency of pair creation events 
which, as in any activation process, goes as 
~41Jol - the creation energy for a soliton pair. 
Note that, to ist order, the correction to E s 
discussed in section 2 usually does not apply to 
the above discussion since Jo is most often 
estimated experimentally from the suscepti- 
bility. Such estimates of Jo are, in any case, 
not usually more reliable than ~i0%. 

6. Conclusion 

This paper presents two components. One is 
to show that in any real Ising-like chain a SBLD 
must arise and has various non-negligible conse- 
quences. The other is to suggest, by an heuris- 
tic and largely phenomenological calculation, 
that the SBLD will quench out the dynamics and 
may at best allow a diffusive propagation of 
solitons. 

Our main rigorous results can be stated as 
follows. A SBLD which, although it is of the 
same order as the root mean square ionic dis- 
placements, involves a large energy because of 
the strong dependence of superexchange on inter- 
spin separation. A correction to the soliton 
energy which can be larger than 10%. A series of 
effective spin Hamiltonians ~i,~2,... which are 
exact to first order and represent successively 
better approximations within the zero lattice 
response time assumption. A positive soliton 
interaction energy, V(d), which falls off expo- 
nentially with soliton separation and whose 
range can be as large as the mean soliton sepa- 
ration at temperatures of interest. A perturbed 
sollton dynamics (Eq. 14) which is exact in the 
limit of low soliton densities and when ZL = 0 
but which is not conceivably useful for most 
real systems since we expect ~L/~c > 0.001. 
And, most importantly with regards to the dynam- 
ics, the existence of a barrier energy, E~, when 
• L * 0. Such a barrier must certainly affect the 
dynamics since it can be comparable to the 
soliton energy itself and is much larger than 
the transverse exchange terms which are usually 
assumed to cause the dynamics at low tempera- 
tures. 

The existence of V(d) and E~ make any free 
soliton gas approach to the dynamics questiona- 
ble. We argue that, depending on its height and 
width, the barrier will lead to something 
between "self trapping" of solitons (for large 
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barriers) to "self scattering" with finite scat- 
tering lengths (for smaller barriers). Also, the 
SBLD for two solitons gives rise to two differ- 
ent barrier heights for motion away from or 
towards the other sollton. We argue that this 
leads to a fast running apart, within a time 
t(n), of two solltons which are thermally creat- 
ed but that, otherwise, there is a strong tend- 
ency for the solitons to be regularly spaced 
apart. This picture is consistent with the tem- 
perature dependence of the spin autocorrelation 
times which are obtained by the MDssbauer 
effect. 9 

Finally, we would like to point out that 
such localized lattice defects of magnetic ori- 
gine should also be present in two and three- 
dimensional magnets whenever strong uniaxlal 
spin anlsotropies exist and ~ac >> ZL" It is 
well known, as can be shown by structural con- 
siderations IS, that many amorphous alloys and 
spin glasses have a uniaxial anisotropy term 
which is large compared to the exchange term in 
the Hamiltonian. It has also been shown recent- 
ly 14,15, that such materials often have spin 
fluctuations with Zac ~ 10-9 - i0-I0 sec. in a 
large temperature range below their magnetic 
ordering temperatures and that, therefore, 
Zac >> ~L" In such cases, the local defects 
might more appropriately be termed "spin-pair 
(or cluster-pair) bound lattice defects" and 
represent a mechanism, for thermoremanent mag- 
netization (TRM) in frustrated magnetic systems, 
which is quite independent of domain wall con- 
siderations. For example, consider the frus- 
trated system which consists of an ensemble of 
isolated Ising trimers with AF spin-spin coup- 
ling. If zero field cooled to saturation at time 
t = O, then the TRM evolves as 

N exp[-2t/z] (20) TRM(t) = ~ g~B 

where i/~ is the soliton jump rate. If the jumps 
are taken to be thermally activated over the 
barrier E b then, 

i exp[_Eb/kr ] (21) = v O 

where, as before, E b ~ 6~2J~/Ra~. Although they 
are an oversimplification, Eqs. 20 and 21 do 
qualitatively describe the TRM of real spin 
glasses. In addition, our spin-pair bound lat- 
tice defects offer a simple ex~lanatlon for the 
observed "waitlng-tlme" effect ~6 which consists 
in • having a dependence on the time the system 
is kept in the zero field cooled state before 
the field is turned off to measure the TRM. This 
arises naturally, since the local defects repre- 
sent a diving force for structural rearrangement 
of the amorphous hard sphere structure. The sys- 
tem relaxes during the waiting time to a struc- 
ture which, in the cooling field, is more ener- 
getically favourable. Such slight structural 
changes are quite conceivable since, for a given 
packing fraction, there are many amorphous 
structural configurations which, in the absence 
of spins, have equivalent energies. And of 
course the lower the temperature, the longer one 
must wait for the same change in z, as is 
observed experimentally. This picture also pre- 
dicts that there should be no such waiting time 
effect in a topologically frustrated spin-glass 
such as C5NiFeF 6 - this, to our knowledge, has 
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not yet been tested experimentally. 
Finally, Eqs. 20 and 21 may be useful in 

that they suggest an experiment, on a strongly 
anisotropic trimer compound, which would unam- 
biguously show the existence of the barrier E b 
that must arise from our SBLD. 
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